Effects of normal stress variation on the strength and stability of creeping faults

نویسندگان

  • M. S. Boettcher
  • C. Marone
چکیده

[1] A central problem in studies of fault interaction and earthquake triggering is that of quantifying changes in frictional strength and the constitutive response caused by dynamic stressing. We imposed normal stress vibrations on creeping laboratory shear zones to investigate the process of dynamic weakening and the conditions under which resonant frictional behavior occurs. Layers of quartz powder were sheared at room temperature in a double-direct shear geometry at normal stress sn = 25–200 MPa, vibration amplitude A = 0.1–10 MPa, period T = 0.1–200 s, and loading rate V = 1–1000 mm/s. Frictional response varied systematically with A, T, and V. Small-amplitude, short-period vibrations had no effect on frictional strength, but large-amplitude, short-period vibrations reduced shear zone strength by about 1%. Intermediate periods caused phase lags between shear strength and imposed vibrations. During long-period vibrations, frictional strength varied sinusoidally, in phase with vibrations and with an amplitude consistent with a constant coefficient of friction. Our data show that friction exhibits a critical vibration period, as predicted by theory. At long periods, the Dieterich (aging) friction law, with the Linker and Dieterich modification to describe step changes in normal stress, provides a good fit to our experimental results for all A and V. At short periods, however, theory predicts more dynamic weakening than we observed experimentally, suggesting that existing rate and state friction laws do not account for the full physics of our laboratory experiments. Our data show that normal-force vibrations can weaken and potentially destabilize steadily creeping fault zones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of statistical distribution of joint trace length on the stability of tunnel excavated in jointed rock mass

The rock masses in a construction site of underground cavern are generally not continuous, due to the presence of discontinuities, such as bedding, joints, faults, and fractures. The performance of an underground cavern is principally ruled by the mechanical behaviors of the discontinuities in the vicinity of the cavern. During underground excavation, many surrounding rock failures have close r...

متن کامل

ارزیابی عملکرد ارقام و لاین‌های پیشرفته سویا تحت تنش خشکی با استفاده از تجزیه GGE بای‌پلات

Evaluation of varieties and soybean lines under drought stress helps to breeders for detecting of stable and high-yielding genotypes. In this regard an experiment was conducted in randomized complete block design with three replications under normal and drought stress conditions across two locations (four environments). The results of combined analysis of grain yield/plant revealed effects of s...

متن کامل

Measurement of Variation in Fracture Strength and Calculation of Stress Concentration Factor in Composite Laminates with Circular Hole

In this research, residual strength and stress concentration factor of laminated composites with a circular open hole are studied analytically, numerically and experimentally. The numerical study was carried out using the finite element method. Moreover an analytical study was carried out with developing of point stress criterion. Mechanical testing was performed to determine the un-notched ten...

متن کامل

Splay Faults in the Makran Subduction Zone and Changes of their Transferred Coulomb Stress

The Makran subduction zone in northeast and the Sumatra subduction zone (Sunda) in the west have been known as tsunamigenic zones of the Indian Ocean. The 990 km long Makran subduction zone is located offshore of Iran, Pakistan and Oman. Similar to many subduction zones all over the world, the Makran accretionary prism is associated with an imbricate of thrust faults across the zone, which may ...

متن کامل

Mechanisms of normal fault development at mid-ocean ridges

[1] Slow spreading ridge segments are characterized not only by small, closely spaced faults that develop near the segment center but also by large, widely spaced faults that develop near the segment ends, typically at the inside corner of a ridge-offset intersection. In this study we investigate the competing effects of stress accumulation in the lithosphere and the yield strength of the litho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004